286 research outputs found

    Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors

    Get PDF
    Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate into one of the four principal cell types. Signalling pathways, including the Notch signalling pathway, coordinate these differentiation processes and their deregulation may cause cancer. Pharmacological inhibition through γ-secretase inhibitors or genetic inactivation of the Notch signalling pathway results in the complete loss of proliferating crypt progenitors due to their conversion into post-mitotic goblet cells. The basic helix–loop–helix transcription factor Math1 is essential for intestinal secretory cell differentiation. Because of the critical roles of both Math1 and Notch signalling in intestinal homeostasis and neoplastic transformation, we sought to determine the genetic hierarchy regulating the differentiation of intestinal stem cells into secretory cells. In this paper, we demonstrate that the conversion of intestinal stem cells into goblet cells upon inhibition of the Notch signalling pathway requires Math1

    Vascular Cognitive Impairment and cognitive decline; a longitudinal study comparing different types of vascular brain injury - The TRACE-VCI study

    Get PDF
    Background: Little is known about the trajectories of cognitive decline in relation to different types of vascular brain injury in patients presenting at a memory clinic with Vascular Cognitive Impairment (VCI). / Methods: We included 472 memory clinic patients (age 68 (±8.2) years, 44% female, MMSE 25.9 (±2.8), 210 (44.5%) dementia) from the prospective TRACE-VCI cohort study with possible VCI, defined as cognitive complaints and vascular brain injury on MRI and at least 1 follow-up cognitive assessment (follow-up time 2.5 (±1.4) years, n = 1172 assessments). Types of vascular brain injury considered lacune(s) (≄1; n = 108 patients (23%)), non-lacunar infarct(s) (≄1; n = 54 (11%)), white matter hyperintensities (WMH) (none/mild versus moderate/severe (n = 211 patients (45%)) and microbleed(s) (≄1; n = 202 patients (43%)). We assessed cognitive functioning at baseline and follow-up, including the Rey Auditory Verbal Learning Test (RAVLT), Trail Making Test (TMT) A and B, category naming task and MMSE. The association of different types of vascular brain injury with cognitive decline was evaluated with linear mixed models, including one type of vascular brain injury (dichotomized), time and vascular brain injury*time, adjusted for sex, age, dementia status (yes/no), education (Verhage scale) and medial temporal lobe atrophy (MTA) score (dichotomized as ≄ 1.5). / Results: Across the population, performance declined over time on all tests. Linear mixed models showed that lacune(s) were associated with worse baseline TMTA (Beta(SE)) (8.3 (3.8), p = .03) and TMTB (25.6 (10.3), p = .01), albeit with a slower rate of decline on MMSE, RAVLT and category naming. By contrast, patients with non-lacunar infarct(s) showed a steeper rate of decline on TMTB (29.6 (7.7), p = .00), mainly attributable to patients with dementia (62.9 (15.5), p = .00). / Conclusion: Although different types of vascular brain injury have different etiologies and different patterns, they show little differences in cognitive trajectories depending on type of vascular brain injury

    Small vessel disease lesion type and brain atrophy: The role of co‐occurring amyloid

    Get PDF
    Introduction: It is unknown whether different types of small vessel disease (SVD), differentially relate to brain atrophy and if co‐occurring Alzheimer's disease pathology affects this relation. / Methods: In 725 memory clinic patients with SVD (mean age 67 ± 8 years, 48% female) we compared brain volumes of those with moderate/severe white matter hyperintensities (WMHs; n = 326), lacunes (n = 132) and cerebral microbleeds (n = 321) to a reference group with mild WMHs (n = 197), also considering cerebrospinal fluid (CSF) amyloid status in a subset of patients (n = 488). / Results: WMHs and lacunes, but not cerebral microbleeds, were associated with smaller gray matter (GM) volumes. In analyses stratified by CSF amyloid status, WMHs and lacunes were associated with smaller total brain and GM volumes only in amyloid‐negative patients. SVD‐related atrophy was most evident in frontal (cortical) GM, again predominantly in amyloid‐negative patients. / Discussion: Amyloid status modifies the differential relation between SVD lesion type and brain atrophy in memory clinic patients

    Prediction of poor clinical outcome in vascular cognitive impairment: TRACE-VCI study

    Get PDF
    INTRODUCTION: Prognostication in memory clinic patients with vascular brain injury (eg possible vascular cognitive impairment [VCI]) is often uncertain. We created a risk score to predict poor clinical outcome. METHODS: Using data from two longitudinal cohorts of memory clinic patients with vascular brain injury without advanced dementia, we created (n = 707) and validated (n = 235) the risk score. Poor clinical outcome was defined as substantial cognitive decline (change of Clinical Dementia Rating ≄1 or institutionalization) or major vascular events or death. Twenty‐four candidate predictors were evaluated using Cox proportional hazard models. RESULTS: Age, clinical syndrome diagnosis, Disability Assessment for Dementia, Neuropsychiatric Inventory, and medial temporal lobe atrophy most strongly predicted poor outcome and constituted the risk score (C‐statistic 0.71; validation cohort 0.78). Of note, none of the vascular predictors were retained in this model. The 2‐year risk of poor outcome was 6.5% for the lowest (0‐5) and 55.4% for the highest sum scores (10‐13). DISCUSSION: This is the first, validated, prediction score for 2‐year clinical outcome of patients with possible VCI

    Expansion of Intestinal Epithelial Stem Cells during Murine Development

    Get PDF
    Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points

    Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats.</p> <p>Methods</p> <p>For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent).</p> <p>Results</p> <p>Microarray gene expression analysis showed that <it>Defcr4</it>, <it>Igfbp5</it>, <it>Mmp7, Nos2, S100A8 </it>and <it>S100A9 </it>were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while <it>Slc26a3</it>, <it>Mptx</it>, <it>Retlna </it>and <it>Muc2 </it>were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including <it>Apc</it>.</p> <p>Conclusion</p> <p>The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to note that one of the alterations concerned <it>Apc</it>, a key gene in colorectal carcinogenesis. The fact that many of the molecular alterations described in this study are documented in human colon tumours confirms the relevance of DMH-induced cancers as a powerful tool for the study of colon carcinogenesis and chemoprevention.</p

    The Clinical Phenotype of Vascular Cognitive Impairment in Patients with Type 2 Diabetes Mellitus

    Get PDF
    Background: Type 2 diabetes mellitus (T2DM) increases the risk of vascular cognitive impairment (VCI). It is unknown which type of vascular lesions and co-morbid etiologies, in particular Alzheimer’s disease pathology, are associated with T2DM in patients with VCI, and how this relates to cognition and prognosis. Objective: To compare brain MRI and cerebrospinal fluid (CSF) markers, cognition, and prognosis in patients with possible VCI with and without T2DM. Methods: We included 851 memory clinic patients with vascular brain injury on MRI (i.e., possible VCI) from a prospective cohort study (T2DM: n = 147, 68.4±7.9 years, 63% men; no T2DM: n = 704, 67.6±8.5 years, 52% men). At baseline, we assessed between-group differences in brain MRI abnormalities, CSF markers of Alzheimer’s disease, and cognitive profile. After two years follow-up, we compared occurrence of cognitive decline, stroke, and death. Results: The distribution of clinical diagnoses did not differ between patients with and without T2DM. T2DM patients had more pronounced brain atrophy (total and white matter volume), and more lacunar infarcts, whereas microbleeds were less common (all p < 0.05). CSF amyloid-ÎČ levels were similar between the groups. T2DM patients performed worse on working memory (effect size: – 0.17, p = 0.03) than those without, whereas performance on other domains was similar. During follow-up, risk of further cognitive decline was not increased in T2DM.∄Conclusion: In patients with possible VCI, presence of T2DM is related to more pronounced brain atrophy and a higher burden of lacunar infarcts, but T2DM does not have a major impact on cognitive profile or prognosis

    Ascl2 Knockdown Results in Tumor Growth Arrest by miRNA-302b-Related Inhibition of Colon Cancer Progenitor Cells

    Get PDF
    Background: Achaete scute-like 2 (Ascl2), a basic helix-loop-helix (bHLH) transcription factor, controls the fate of intestinal stem cells. However, the role of Ascl2 in colon cancer progenitor cells remains unknown. The cell line HT-29 (47.5–95 % of CD133 + population) and LS174T (0.45 % of CD133 + population) were chosen for functional evaluation of Ascl2 in colon cancer progenitor cells after gene knockdown by RNA interference. Methodology/Principal Findings: Immunohistochemistry demonstrated that Ascl2 was significantly increased in colorectal adenocarcinomas. Downregulation of Ascl2 using RNA interference in cultured colonic adenocarcinoma HT-29 and LS174T cells reduced cellular proliferation, colony-forming ability, invasion and migration in vitro, and resulted in the growth arrest of tumor xenografts in vivo. The Ascl2 protein level in CD133 + HT-29 cells was significantly higher than in CD133 2 HT-29 cells. Ascl2 blockade via shRNA interference in HT-29 cells (shRNA-Ascl2/HT-29 cells) resulted in 26.2 % of cells staining CD133 + compared with 54.7 % in control shRNA-Ctr/HT-29 cells. The levels of ‘stemness ’ associated genes, such as CD133, Sox2, Oct4, Lgr5, Bmi1, and C-myc, were significantly decreased in shRNA-Ascl2/HT-29 and shRNA-Ascl2/LS174T cells in vitro as well as in the corresponding tumor xenograft (CD133 was not performed in shRNA-Ascl2/LS174T cells). The shRNA-Ascl2/ HT-29 cells had inhibited abilities to form tumorspheres compared with control. The microRNA (miRNAs) microarrays, identified 26 up-regulated miRNAs and 58 down-regulated miRNAs in shRNA-Ascl2/HT-29 cells. Expression levels of let-7b

    Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System

    Get PDF
    The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation
    • 

    corecore